Reweighting sensory signals to maintain head stability: adaptive properties of the cervicocollic reflex.

نویسندگان

  • J S Reynolds
  • D Blum
  • G T Gdowski
چکیده

A major goal of this study was to characterize the cervicocollic reflexes (CCRs) in awake squirrel monkeys and compare it to observations in cat. This was carried out by stabilizing the head in space while rotating the lower body. The magnitude and phase of the torque produced between the head and the restraint system was used as an indicator of the CCR. Many properties of the squirrel monkey's CCR were found to be similar to those of the cat. The torque decreased as a function of frequency and amplitude. In addition, the static level of torque increased with head eccentricity. One difference was that the torque was 90x smaller in squirrel monkeys. Biomechanical differences, such as differences in head inertia, could account for these differences. The second goal was to determine if the CCR was sensitive to increases in the head's inertia. To test this, we increased the head's inertia by a factor of 36 and allowed the reflexes to adapt by rotating the whole body while the head was free to move. The CCR was rapidly assessed by periodically stabilizing the head in space during whole-body rotations. The magnitude of the torque increased by nearly 60%, suggesting that the CCR may adapt when changes in the head's inertia are imposed. Changes in the torque were also consistent with changes in head-movement kinematics during whole-body rotation. This suggests that the collic reflexes may dynamically adapt to maintain the performance and kinematics of reflexive head movement.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cross-Modal Calibration of Vestibular Afference for Human Balance

To determine how the vestibular sense controls balance, we used instantaneous head angular velocity to drive a galvanic vestibular stimulus so that afference would signal that head movement was faster or slower than actual. In effect, this changed vestibular afferent gain. This increased sway 4-fold when subjects (N = 8) stood without vision. However, after a 240 s conditioning period with stab...

متن کامل

Neural correlates of sensory substitution in vestibular pathways following complete vestibular loss.

Sensory substitution is the term typically used in reference to sensory prosthetic devices designed to replace input from one defective modality with input from another modality. Such devices allow an alternative encoding of sensory information that is no longer directly provided by the defective modality in a purposeful and goal-directed manner. The behavioral recovery that follows complete ve...

متن کامل

Resolution of sensory ambiguities for gaze stabilization requires a second neural integrator.

The ability to simultaneously move in the world and maintain stable visual perception depends critically on the contribution of vestibulo-ocular reflexes (VORs) to gaze stabilization. It is traditionally believed that semicircular canal signals drive compensatory responses to rotational head disturbances (rotational VOR), whereas otolith signals compensate for translational movements [translati...

متن کامل

Reweighting of Sensory Inputs to Control Quiet Standing in Children from 7 to 11 and in Adults

How sensory organization for postural control matures in children is not clear at this time. The present study examined, in children aged 7 to 11 and in adults, the postural control modifications in quiet standing when somatosensory inputs from the ankle were disturbed. Since the reweighting of sensory inputs is not mature before 10, we hypothesized that postural stability was more affected in ...

متن کامل

Learning VOR-like stabilization reflexes in robots

We present a binocular robot that learns compensatory camera movements for image stabilization purposes. Most essential in achieving satisfactory image stabilization performance is the exploitation/integration of different self-motion information. In our robot, self-motion is measured inertially through an artificial vestibular apparatus and visually using basic motion detection algorithms. The...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 99 6  شماره 

صفحات  -

تاریخ انتشار 2008